
REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-01-0188

I he public reporting burden tof this collection ot information is estimated to average 1 hour per response, including the time tor reviewing instructions, searching existing data souices. gathering
and maintaining the data neededjand completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden to Department of Defense, Washington Headquarters Services Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington VA 22202-4302, Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

14-08-2002

2. REPORT TYPE

Technical
3. DATES COVERED (From- To)

4. TITLE AND SUBTITLE

AN ARTIFICIAL NEURAL NETWORK TRACKING ARCHITECTURE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
0601152N

6. AUTHORS

M. W. Owen
SSC San Diego

5d. PROJECT NUMBER

A. R. Shibbenid
UC Irvine

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

SSC San Diego
San Diego, CA 92152-5001

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
This is a work of the United States Government and therefore is not copyrighted. This work may be copied and disseminated
without restriction. Many SSC San Diego public release documents are available in electronic format at
http://www.spawar.navy.mil/sti/publications/pubs/index.html

14. ABSTRACT

In this paper, a neural extended Kalman filter algorithm is used for tracking of a highly maneuvering target. The neural extended
Kalman filter is used to improve a mathematical motion model for use in prediction. Instead of just applying a high process noise
model (a catch-all technique) in an interacting multiple model architecture to hold a target through a maneuver, a neural extended
Kalman filter is used to predict the correct velocity and acceleration states of a target. This, in turn, may allow noise reduction
during a target maneuver. Tracking results that stress the algorithm during severe maneuvers are shown along with the tuning
parameter issues of the artificial neural network.

Presented at IRIS National Symposium on Sensor and Data Fusion (NSSDF) 2002 Military Sensing Symposia (MSS).

15. SUBJECT TERMS

Mission Area: Surveillance
tracking systems
Mathematical motion model

neural-extended Kalman filter
multiple model architecture

noise reduction

16. SECURITY CLASSIFICATION OF:

a. REPORT

u
b. ABSTRACT

u
c. THIS PAGE

u

17. LIMITATION OF
ABSTRACT

uu

18. NUMBER
OF
PAGES

20

19a. NAME OF RESPONSIBLE PERSON
M. W. Owen

19B. TELEPHONE NUMBER (Include area code)
(619)553-2041

Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std Z39 18

Approved for public release; distribution
is unlimited

An Artificial Neural Network Tracking Architecture

August 14,2002

Mark W. Owen
SPA WAR Systems Center San Diego

Code 2725
53560 Hull Street

San Diego, CA 92125
mowen@spawar.navy.mil

Allen R. Stubberud
Department of Electrical and Computer Engineering

University of California, Irvine
Irvine, CA 92697
arstubbe@uci.edu

ABSTRACT

In previous work, the authors embedded a neural extended Kalman filter algorithm
in a closed loop feedback system and presented results on a servo-tracking
problem. The reason behind using a neural extended Kalman filter algorithm was
to improve the estimator's mathematical model. Without the correct model the
unmodeled dynamics or nonlinearities in the system would yield an unstable filter.

In this paper, a neural extended Kalman filter algorithm is used for tracking of a
highly maneuvering target. The neural extended Kalman filter is used to improve a
mathematical motion model for use in prediction. Instead of just applying a high
process noise model (a catch all technique) in an interacting multiple model
architecture to hold a target through a maneuver, a neural extended Kalman filter is
used to predict the correct velocity and acceleration states of a target. This in turn
may allow noise reduction during a target maneuver.

Tracking results that stress the algorithm during severe maneuvers will be shown
along with the tuning parameter issues of the artificial neural network.

20090803059

Introduction

The Robust Tracking with a Neural Extended Kalman Filter (NEKF) project is an Office of Naval
Research (ONR) In-House Laboratory Independent Research (ILIR) sponsored effort at SPAWAR
Systems Center San Diego [1]. The project's goal is to provide an improved state estimation capability
for current U.S. Navy tracking systems. The NEKF will provide added capability for the real-time
modeling of maneuvers and, therefore, will enhance the ability of tracking systems to adapt appropriately.

The NEKF has been used in the past in control system technology and for system identification [2, 3, 4, 5,
6, 7, and 8]. During this project the NEKF will be incorporated into a tracking architecture to provide
robust tracking capabilities that are currently unavailable.

2. Background

State estimation and tracking of highly maneuvering targets has and still is an extremely difficult task in
modern tracking systems. Current state estimation approaches to the tracking problem include alpha-beta
filters, Kalman filters, interacting multiple model (IMM) filters, probabilistic data association (PDA)
trackers, joint PDA (JPDA) trackers to name a few [9 and 10]. State estimation is the problem of deriving
a set of system states that are of interest to a system or decision maker. System states consist of
parameters such as position, velocity, frequencies, magnetic moments, and other attributes of interest.
Most often system states are not measurable at the system output. For example, range and bearing of a
target may be available from a radar sensor but the position and velocity of the target needs to be derived
from the radar measurement. To derive these states an estimation algorithm is used. A mathematical
system model is necessary for the aforementioned filter algorithms to perform state estimation.

A well known state estimation algorithm is the tried and true Kalman filter developed four decades ago by
R. E. Kalman [11]. The Kalman filter is widely used in government and industry tracking problems. The
Kalman filter uses an assumed mathematical system model (i.e. a straight line motion model for an
aircraft) to estimate the states (position, velocity, signatures, etc..) of the aircraft. A problem occurs
when the aircraft or system being tracked changes from the assumed motion model. The filter will tend to
lag behind the true state of the target or even diverge and become unstable and unable to estimate the
system. A block diagram of the Kalman filter is shown in Figure 1 below. The filter consists of the

dynamic system to be tracked, a mathematical system model F (k), an observation model H (& +1), the

Kalman gain K (k + l), a predicted observation z(£ + l), and the system state vector x(k\k). The

Kalman filter is a recursive estimation algorithm that is driven by the observation data z(k + l) from the

dynamic system. As data is processed a filtered estimate of the state x(k\k) is generated by the filter.

As long as the dynamic system is linear, and matches the assumed motion model, the filter will perform
quite well and tracking will be successful. In cases where motion model and/or the observation model are
nonlinear, then an extension of the linear Kalman filter must be used. An extension of the Kalman filter
is the extended Kalman filter (EKF) [12]. The EKF is used to handle known nonlinearities. The extended

Kalman filter evaluates the nonlinear system model f(x(k),k) about the current state and the nonlinear

observation model h(\(k +]),k + \) about the predicted state and H (k +1) is the Jacobian of the

nonlinear observation equations evaluated at the predicted state. The extended Kalman filter equations
are shown below in Figure 2. The Kalman filter is the same except for the nonlinear equations mentioned
previously.

z(A + l Az(A + l|A)

:(k + \\k + \)

i(k\k)

"^ K(A + l)

T

Unit

Delay

F(k) H(A + I)

w J ^/
k

X(A + I|A)

k(J + l|*)

Figure 1. Kalman Filter Block Diagram

System Model
x(£+1) = f[x(*),*]+L[x(*),*]w(A]

z(A + l) = h[x(A + l),A + l]+v(A + l)

Update Equations

x(k + \\k) = f\x(k\k),k]

P(A + I|A) = A(A)P(A|A)A'(A) + L(A)Q(A)L'(A)

Initialization

x(0\0) = E[x(0)]
P(0|0) = P(0)

Prediction Equations
x(A + l|A) = f[x(A|A),A]

P(* + l|*) = A(fc)P(A|*)A'(A;) + L(*)Q(A)L'(/t)

where

Q(*)-fi[w(*)w'(*)]

A(A) =
[«()],

Dx{k) l,(4H(*lt)

L(*) = L[i(*|A:),*]

Kalman Filter Gain
K(A + l) = P(A + I|A)H7A + l)[H(A + l)P(A + l|A)ll'(A + l)+R(A + l)T

where

R(A + l)=/s|~v(A + l)v'(A + l)]

Updated Covariance

P(A +11A +1) = [l - K(A +1)H (A + l)]P(A- +11 A)

Updated State

x(A + l|A + l) = x(A + l|A)+K(A + l)Az(A + l|A]

Az(A + l|A) = z(A + l)-h[x(A + l|A),A + l]

Figure 2. Extended Kalman Filter Equations

Another well known state of the art tracking technique is the interacting multiple model (IMM) filter [13,
14, 15, and 16]. The technique employs multiple models (a bank of Kalman filters) to perform state
estimation. Each model may contain a different mathematical system model, observation model, variable
dimensional state, or noise processes. For example, an IMM filter could consist of two Kalman filters, the
first model using a straight line motion model with a low process noise and a second model with a high
process noise. The two models are mixed probabilistically to fit the dynamics of the target. As long as the
target follows a straight line motion and does not deviate from it, the first model will be in effect. As a
target maneuvers from a straight line motion, the second model becomes in effect and in a sense the noisy
positional measurements are connected together yielding a very poor velocity estimate of the target during
the maneuver. The IMM architecture can also be used with an EKF used as one of its models. As before,
to use the EKF we must know the nonlinearity of the system. When it comes to tracking moving targets
we do not know what the craft will necessarily do next. This causes a problem with trying to model or
account for a good motion model for the filter to use.

If a nonlinear model is unattainable, than a system identification technique could be used to create a
model. A big buzz in the late 80's early 90's was artificial neural networks. A neural network is a
function approximation technique. Given a set of inputs and a desired set of outputs a neural network
could be trained to approximate well any function. The Stone Weierstrauss theorem states that given the
class of squashing functions, we can uniformly approximate any continuous function [17]. This is purely
an existence theorem. It does not state how to construct a neural network or how to train its weights.
Neural networks contain a set of weights that must be determined to approximate functions. To train
neural networks, techniques such as backpropagation [18, 19], evolutionary programming [20], and the
extended Kalman filter [21] have been used. In [21], Singhal & Wu asked the question, "Why not use a
Kalman filter to estimate the weights (states) of a neural network?" What they hypothesized was that the
weights of a neural network are also the states of the network. The EKF training technique trains
networks on the order of tens of iterations instead of thousands of iterations for such methods as
backpropagation. An artificial network equation is shown in equation 1.

N f f J
Equation I. NNm — ^\ Wim• ft V]h* wu

where fi — : r is the output of the ith hidden node and Xi is the dot product sum of the
1 + exp(-Aij

previous input layer's output with the connecting weights of the hidden layer, NNm is the mth output of
the neural network, Wtm is the mth output weight connected to the ith hidden node, Wki is the kth input
weight connected to the ith hidden node, and Ik is the kth input feeding the neural network. Stubberud
took the EKF trainer one step further.

3. Neural Extended Kalman Filter

The Neural Extended Kalman Filter (NEKF) is based on the Singhal and Wu EKF neural network trainer.
Stubberud took the technique one step further. Basically the algorithm is to use a Kalman filter to
estimate the states by using a linear system model and at the same time use the Kalman filter to train a
neural network to calculate the (nonlinearities, mismodeied dynamics, higher order modes, etc..) of the

system. Estimation of the system states are performed at once without the necessity of modeling the
nonlinearities a priori as in the case of the Extended Kalman Filter. The NEKF architecture is shown in
Figure 3. The inputs to the neural network are the updated states of the filter. The inputs are passed
through an input layer, a hidden layer with nonlinear squashing functions, and an output layer. The
outputs of the neural network are nonlinear corrections to the linear predicted state of the Kalman filter.

WiTI .T S'W0

w211
• AXk

Figure 3. NEKF Architecture

The following are the NEKF Equations including the calculation of the Jacobian with respect to the neural
network. This network is specifically for a 4 hidden node network with four states.

3.1. Predictor Equations for the NEKF

x(k + l/k) = x(k/k)+ Tsvx(k/k) + NN\(x(k/k),w(k/k))

vx(k + \/k) = vx(k/k) + NN2(\(kl k)Mklk))

){k+\ Ik) = y{klk) + Tsvy(k/k) + NN3(x(k/ k)Mk/k))

vv(k + \/k)= vv(kl k) + NN4(x(k/k), w(kl k))

w(;fc + l/*)=w(*/Jfc)

3.2. Neural Network Equations in NEKF

4

7=1

4

NN2(x(k/*),w(k/k)) = ^M^y /((wj-)Tx(klk) + wJ-5)+ w^
7=1

4
NN3(k(k/k),w(k/k)) = Y^lj f^jfUk/k) + w)s V w^

7=1
4

AW4(x(*/*),w(k/k)) = £M^ /((w))rx(yt/>t) + ivj5)f W|5

7*1

where

(w})r = [v;, wj-2 w}3 w)4~\; ./ = 1,2,3,4

(/*) = [#*/*) vva-/A-) #*/£) vy(k/k)]

3.3. The NEKF State Vector

Define

(Wy) = lwy] Wy2 Wy3 Wj4 I J 7 = 1,2,3,4

, KT
1
 r i i i i l (w5) =|H',5 ir25 M'35 it-45J

2J1 [2 2 2 2 1
(w5) = [vv15 H^ W35 vi'45J

Note that the notation for (wj) and (W5) is different from that for (w •)' and(wy) for /= 1,2,3,4.

The NEKF state vector can be written as

(W) = Lw(/*)J

where

w =

rw}i

w3
w4

W5

w?

W4

W5.

Note that wj, w^, w], and W4 represent 16 weights in the hidden layer of the neural network, wl represents

5 2 9 ^
4 biases in the hidden layer of the neural network, wf, w% wj, and wj represent 16 weights in the output layer

of the neural network, and W5 represents 4 biases in the output layer of the neural network.

Thus the vector w has 40 elements and the state vector of the NEKF has 44 elements.

Note that the prediction vector is given by

r*(*+i/*)l

3.4. The Jacobian Matrix

The Jacobian matrix J is a 44x44 matrix generated by differentiating the vector \(k + \lk) by the vector \(k/k), that is,

Mk + \lk)
Mklk)

\/ 2x7"! (Wi)

We now make the following definitions

W'= (W2)

(w3)

.(w4)

'1

(w3)
< 2^7' _(w4) _

/(*,)=
df(z)

rk
where zy=(wl) x(k/k) + w}^

F(z) =

r/(zj) 0 0 0 1
I 0 /(z2) 0 0 I

0 0 f(z3) 0

0 0 0 f(z4\

z = [z, z2 z3 z4]

/(z/)=/(zi_7.

fr(z) = [/(z,) /(z2) /(z3) /(z4)]

|"fr(z) or 07' 0T

F(z) = | U
r

0
0r fr(z) 07

0 ()' QT fr(z).

where 0r = [0 0 0 0]

X(k/k) =

\T(k/k) or
0J or 1

07' \T(k/k) or o^ 1
or 0T xT(k/k) or

or 0T or ir(*/*)_

OnXm = zero matrix with n rows and m columns

I„x„ = identity matrix with n rows and columns

Using these definitions, the Jacobian matrix can be written as

TA+W
2
F(Z)W

1

°40x4

W2F'(z)X0t//fc) | W2F(z) | F(z) | I4x4l

140x40

4. Tracking result comparisons

The following is a set of comparison results between a linear Kalman filter, a linear 1MM 2 model filter,
and two NEKF's with 4 and 10 hidden nodes, respectively. To make the comparisons between the
tracking filters each filter used the same amount of process noise, except for the lMM where its first
model used none. Each filter used a constant velocity straight line motion model with a 4 state vector
consisting of position and velocity in a Cartesian coordinate system. The neural network architecture for
both networks only used 2 outputs in this simulation. These two outputs were nonlinear or unmodeled
higher order mode corrections to the velocity states. The nonlinear squashing functions used by the
neural networks here hyperbolic tangent functions. The network with 4 hidden nodes had a total of 30
weights to be trained at each time sample for adaptation and the network with 10 hidden nodes had 72
weights. This tracking study was for a single target on a two dimensional Cartesian grid. A jerk motion
model was used to generate truth. This was used to yield a smoother ramp up for acceleration and
velocity for a more realistic scenario. Figure 4 shows the true position of the track for the scenario. The
track starts at (0,0) in the grid at a speed of 10 units/time sample along the x-axis. It then increases its
speed to 35 units/time sample and then decelerates back to 10. Then the track turns right and accelerates
through a 1X0 degree turn. Its top speed though the turn is 90 units/time sample. The track then
decelerates back to 26 units/time sample. A left 180 degree turn is then performed moving the track back
on the positive x-axis direction. The track then decelerates again to 20 units/time sample. Finally, the
track moves into five 360 degree turns before the scenario ends. A radar equation was implemented for
the simulation to generate range and bearing measurements from the sensor to the target. Gaussian noise
was added to both the true range and true bearing to be used by each filter. The amount of uncertainty
used varied from 10, 50, and 100 units of noise for range and 1, 2, 3, and 10 degrees for bearing. The
sensor location in this scenario is located at the origin. The sensor location caused the beginning data of
the target to be very noisy due to the measurements all falling very close into the sensor. As the target's
trajectory moved away from the origin the data began to look more like the trajectory and not just
bouncing around aimlessly. Figure 5 is shown to provide an idea of noisy range and bearing
measurements. They have been converted to x,y coordinates for display purposes. In the figure a Monte-
Carlo Kalman filter result is overlayed in blue. Notice the large lag when the accelerating turn occurs and

Target Position Truth

-500

-1000

<

-1500

-2000

-2500

g^^S.%t^M^:^^t¥irrSr^

S<SS?H35

v\.yt:c

v-ssasr

-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500
X-Axis

7igure 4. Scenario
Single Run Target Position Estimate

Figure 5. Noisy Observations

10

when the constant velocity turns occur. Figure 6 is a zoomed in view of the 5 circular turns of the target
that look like a hornet's nest. This figure shows another result from the Kalman filter. The range/bearing
error on the measurements can be seen in this figure. Notice the right and left sides of the track lag
heavily and the top and bottom track rather well close to truth. This is due to the target trajectory in
reference to the sensor location. Figures 7-9 are results from a typical network run. Figure 7 shows the
weights of a four hidden node neural network. The number of weights in the neural network are 30 for
this network. The large swings in network adaptation are due to the target maneuvers causing the
network to add nonlinear corrections to the output of the linear Kalman filter. Of note, the neural network
is also adding unmodeled mode dynamics such as acceleration corrections or jerk corrections to adjust the
velocity states. For example, if in the real target track an acceleration is increasing the velocity in the x
direction by two, the neural network will adapt and increase the velocity estimate by two units. The
neural network adapts through the residual error between the predicted observations and the noisy
observations from the sensor. In Figure 7 the first real large

Single Run Target Position Estimate

X-Axis

Figure 6. Hornet's Nest

Adaptation occurs at time 50. This is when the first acceleration is performed by the target. At time 80
the target decelerates back to its original speed and the network adapts again. At time 120 a very large
adaptation occurs in the neural network. At this time, the target is accelerating and performing a 180
degree turn. The speed increases by 9 times by the end of this maneuver from 10 units/time sample to 90
units/time sample. The network has to keep adjusting as each data point is processed to keep up with the
large maneuver. At time 170 the target then decelerates back to a speed of 26 units/time sample. At time
230 the second 180 degree turn occurs and the network adapts again. At time 275 another deceleration

II

occurs and the network adapts again. Finally, at time 340 until the end of the scenario the target's
trajectory is a constant speed 5 degree/time sample turn. From this time on in the figure it can be seen
that the neural network weights are adapting in a sinusoidal fashion to accommodate the corrections to the
x and y velocity states. Another note about Figure 7 is the weights that almost look constant throughout
the run. These weights are the bias weights in the network's input and output layers. These weights
perform noticeable adjustments when strong maneuvers occur in the trajectory. These bias weights are
needed to perform an affine transformation to move the function approximation from having to exist
always at the origin. A final note about this figure is since the observations are noisy the weights are
always constantly adapting. The sinusoidal inputs look noisy because of this. The better the sensor the

2.5
Neural Network Weights

1.5

os

• ... -, . i . . • 11.lY - \r ± SA

- r-.--.- T -

•j • -'..^V-^'.^,A,/: V .yA'i _ J di-iiL__ 11 — (.

rx
-0.5

-1.5

100 2(H) 300 400
Time

500 600 /no

Figure 7. NEKF Weights

less the weights have chatter in their adaptation. Figures 8 and 9 are the outputs for the y and x velocity
corrections for the neural network, respectively. Recalling that the first maneuvers at time 50 and 85 only
occur in the x-direction, Figure 8 shows that the corrections for the y-velocity state are very small and in
the noise. Figure 9, however, contains adjustments for the x-velocity where the maneuvers occur. At
these times the network increases the x-velocity and then decreases when the target slows down again.
When the accelerating turn occurs at time 120 the network's outputs for x and y velocity corrections are
the largest. When the maneuvers stop and the trajectory returns to straight line motion the network's
outputs go to small levels. Notice at the end of the figures the sinusoidal corrections for adapting through
the circular motion.

12

i1
>
>-
z z MM* **' V

tr-i

Neural Network Output Vy

::

%_ .-

f

7-4

yr~7r -/I

W 'i

100 200 300 400 500 600
Time

TOO

Figure 8. Y Velocity Correction
Neural Network Output Vx

1 --

5 |
in '

I
« -2

z

)W--t

/
/

-:.- A
•

V •

W*i
.*•••

J

u

t:"ft"
!i H 1 t v/-

100 1?U0 300 400
Time

500 600 700

Figure 9. X Velocity Correction

13

For each of the tracking results in Figures 10-15 a time average position error statistic of 50 Monte-Carlo
runs was used to generate the plots. The statistic was calculated hy the following four equations

poserr = poserr

noise err = noise err

+ J(x-xtmth)~ + (y -ytruth)'

+ J(zx - xtruth)2 + (zv - ytruth)'

Delta = noiseerr-poserror

avg(i) = avg(i + \) + Delta(i)

where pos_err is the position error between the state estimates and truth, noise_err is the position error

between the noisy observations and truth, Delta is the difference between the noise error and the estimate
error, and avg is the time average of the error statistic. If the avg is increasing the filter is doing well,

and if the avg is decreasing the filter is performing poorly. Fifty Monte-Carlo runs were averaged for
each error statistic that is plotted in Figures 10-15. In each figure all four tracking filters are plotted

20000

15000

10000

5000

-5000

'

_ — _. 1— _ — _. , _ _^'l_--'- .- •

•

-- NN10
NN4
KF
IMM

x^t \

W^l
i i i

100 200 300 400

Time

500 GOO TOO

Figure 10. R = 50, B = 2

together and overlayed on the same plot. Each plot has a legend where the network with 10 hidden nodes
is blue, the network with 4 hidden nodes is red, the Kalman filter is magenta, and the IMM is green.
Figure 10 is a result where the range uncertainty was set to 50 units, and the bearing uncertainty to 2
degrees. In this figure the IMM is ahead of the NEKF results until the hornet's nest maneuver. Then both
NEKF's perform much better than both the Kalman filter and the IMM. In Figure 11, the bearing

14

uncertainty is now set to 1 degree. The NEKF's once again outperform the IMM and the Kalman filter.
In Figure 12 the range uncertainty was increased to 100 units. In this case the NEKF's performed the
worst compared to the Kalman filter and the IMM. This was due to the initial measurements from the
sensor having large amounts of noise and not allowing a trajectory to form until the target moved far
enough away from the origin. It is believed that if the scenario would have run longer that the NEKF's
would have caught up with the other estimators. Notice at the end of the error statistic plots on Figure 12
that the NEKF results are increasing and the IMM and Kalman filter are starting to decrease. A box car
average has been suggested to better compare the different estimators.

10000

8000

6000

U 4000

S
CO

2000

-2000

-4000

i I I I I I
NN10
NN4
KF
IMM

i i i , i

i t i i i/' -'

\ : : : /.

: /X"

; i

 i \...J\ I.....
; - ' ': ; ; :

\ ; : i

^ : : ! : :

I) KM 200 300 400 500
Time

600 /IK)

Figure 11. R = 50, B = 1

Figure 13 shows the results of setting the range uncertainty to 10 units along with the bearing uncertainty
still set to 1 degree. This plot more clearly shows the NEKF's outperforming the other two filters. Figure
14 shows the results of setting the range uncertainty to 100 units with the bearing uncertainty set to 3
degrees. Once again in this figure the NEKF's outperform the other two trackers. Finally, in Figure 15
the results of setting the range uncertainty to 100 units with the bearing uncertainty set to 10 degrees is
shown. This figure shows the NEKF's lower in score, but all of the filter results are very close together in
this highly noisy case.

15

x 10
1 b

1

- NN10
NN4
KF
IMM

I 1 I I 1

r n ~ ~ r — ~i ~ " — i— —

OS

0

-0.5

! 1 1 1 I 1 / 1
1 1 1 ',••'.-' ^/

... | | __ ^ ,"""l "" ^" 1 1 "

-1.5

-?

\ ' J L^'_J _ - -1- 1 _ l_

\/^-~f i 1 i i
100 zoo 300 400

Time

soo 000 700

Figure 12. R= 100, B= 1

8000
I

/

7000
NN10
NN4
KF
IMM

6000

5000

4000

3000

2000

1000

0

-1000

.__/--. i
y

 ^ ._ ...

;

,>//
i

100 200 300 400 500 600

Time

700

Figure 13. R= 10, B= 1

16

x 10
3.5

3

25

1.5

0.5

-05

1 I

\ /

NN10
NN4
KF
IMM

'••/

.-~y i • •

rJS

_

1
—

1

 \-,/-,
i r
i /

 >' ."

s

1 L
-

\

,. [zl\
\ • I

100 200 300 400

Time

500 600

Figure 14. R= 100, B = 3

12

10

B

x 10

0

i i 1 1 1

NN10
NN4
KF
IMM

_._4 i \ \~ 1 '

I 1

1 ' !

III!

10(1 200 300 400 500 600 700

Time

Figure 15. R = 100, B = 10

17

5. Research Issues

Some of the research issues this project is trying to address is as follows.

Show that the Neural Extended Kalman Filter can be embedded into an Interacting Multiple
Model (NEKF IMM) algorithm

Show that the NEKF IMM algorithm provides smoothed estimates during system dynamics

Show that the NEKF provides smoothed estimates during system dynamics

Show that the NEKF has a second order convergence

Develop techniques for choice of optimal noise processes of the NEKF

Determine the neural network architecture needed to work across a broad range of problems

Show improved tracking performance over other techniques (alpha-beta, Kalman, IEKF, IMM,
etc..)

Investigate the effects of the NEKF in the IMM architecture

Targeting specific states (velocity) or is all more robust

Observability dependence on initial conditions

Observability can lead to a Stability Proof

Multi-Target Tracking

Data Association

Pd, Pfa, Loss of Signal Detection making a more complex realistic scenario

Squashing Functions

Multi-Layer Networks

Is an IMM architecture required

Tracking Benchmark Study

Higher Order Models

Data Fusion in a Multi-Sensor Environment

6. Conclusions

In this paper we discussed the neural extended Kalman filter as applied to the target tracking problem.
The NEKF uses a neural network to adapt on-line to unmodeled dynamics or nonlinearities in the target
trajectory. This on-line adaptation provides for a robust state estimation for tracking applications because
the maneuvers do not have to be known beforehand. The NEKF is a generic state estimator that can be

18

used to estimate any state vector such as position, velocity, magnetic moment, frequency signatures, etc...
Comparisons were performed between a linear Kalman filter, a 2 model IMM filter, and two NEKF's
with differing hidden layers. The NEKF outperformed the other filters in almost every case analyzed.
Further investigation into why the NEKF did not outperform in each case is now under investigation.

7. Acknowledgements

The authors would like to thank the SPA WAR Systems Center San Diego In-House Laboratory
Independent Research (1LIR) program funded through the Office of Naval Research for funding this
effort.

8. References
[1] Robust Tracking with a Neural Extended Kalman Filter - Office of Naval Research (ONR) In-House
Laboratory Independent Research (ILIR) Project FY02

[2] "Approximation and Estimation Techniques for Neural Networks," A. R. Stubberud, H. Wabgaonkar,
Proceedings of the 28th Conference on Decision and Control, Honolulu, Hawaii, pp 2736-2740,
December, 1990.

[3] "A Neural-Network-Based System Identifcation Technique," A. R. Stubberud, II. Wabgaonkar and
S.C. Stubberud, Proceedings of the 30th Conference on Decision and Control, Brighton, England, pp
869-X70, December, 1991.'

[4] 'Adaptive Extended Kalman Filter Using Artificial Neural Networks," R.N. Lobbia, S.C. Stubberud,
and M.W. Owen, The International Journal ofSmart Engineering System Design, Vol. 1, pp. 207-221,
1998.

[5] "Artificial Neural Network Feedback Loop," S.C. Stubberud, M.W. Owen, Proceedings of the 11th
International Symposium on Intelligent Control, Dearborn, Michigan, pp. 514-519, September, 1996.

[6] "An Adaptive Extended Kalman Filter Using Artificial Neural Networks," R. N Lobbia, S.C.
Stubberud, and M.W. Owen, Proceedings of the 34th Conference on Decision and Control, New Orleans,
Louisiana, pp 1X42-1X46, December, 1995.

[7] M. Owen, "Application of Neural Networks Using Extended Kalman Filtering", Master Thesis,
California State University Long Beach, May 1997.

[X] S. Haykin, Neural Networks and Kalman Filtering, Wiley & Sons, 2001.

[9] S. Blackmail, Multiple-Target Tracking with Radar Applications, Artech House, 19X6.

[10] S. Blackmail and R. Popoli, Design and Analysis of Modern Tracking Systems, Artech House, 1999.

[11] A. Gelb, Applied Optimal Estimation. M.I.T. Press, 1974.

[12] M. Santina, A. Stubberud, and G. Hostetter, Digital Control System Design, Saunders College
Publishing, 1994.

[13] Y. Bar-Shalom and X. Li, Estimation and Tracking: Principles. Techniques, and Software. Artech
House, 1993.

19

[14] Y. Bar-Shalom and X. Li, Multitarget-Multisensor Tracking: Principles and Techniques, YSB
Publishing, 1995.

[15] Y. Bar-Shalom and X. Li, and T. Kirubarajan, Estimation with Applications to Tracking and
Navigation. John Wiley & Sons, 2001.

[16] Y. Bar-Shalom and W. Blair, Multitarget-Multisensor Tracking: Applications and Advances Volume
IJI, Artech House, 2000.

[17] A. R. Stubberud, H. Wabgaonkar, "A Neural Network Based Non-linear Control Technique",
Advances in Control, C. T. Leondes (ed.) Academic Press, 1992.

[18] (eds.) D. White and D. Sofge, Handbook of Intelligent Control Neural, Fuzzy, and Adaptive
Approaches, Van Nostrand Reinhold, 1992.

[19] R. Hecht-Nielsen, Neurocomputing, Addison-Wesley Publishing Company, 1990.

[20] D. B. Fogel, Evolutionary Computation Toward a New Philosophy of Machine Intelligence. IEEE
Press, 1995.

[21] S. Singhal and L. Wu, "Training Multilayer Perceptrons with the Extended Kalman Algorithm,"
Advances in Neural Information Processing System I. D.S. Touretzky (ed.) Morgan Kaufmann, 1989,
pages 133-140.

20

